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E Cambria, R Mao, M Chen, Z Wang, SB Ho. Seven Pillars for the Future
of Artificial Intelligence. IEEE Intelligent Systems 38(6), 62-69 (2023)




Seven Pillars

Artificial Intelligence

W U YV W7 Y ' Yy

e
60
<
=
-
<
—
O
—
=
S
.

Multidisciplinarity
Task Decomposition
Symbol Grounding
Similarity Measure
ntention Awareness
Trustworthiness

e

https://sentic.net/7-pillars-for-the-future-of-ai.pdf



https://sentic.net/7-pillars-for-the-future-of-ai.pdf

Trustworthiness

§
Ea&‘%o g;ago

Commercial Business Recommender

provider system User

)

@ -

Decisions

Impact

goals Q

J

PI1: Positive
economic impact

Z Pl2: Better user
experience
(L2

~ PI5: Broadening

. 1) P14 Time-saving @ Pl roade

Positive impact on economy and users

6? PI3: Better user
7 / satisfaction

sb pi6: Nudging

NI1: Information
bubble

@

| @ | NI4: Less autonomy

@/ (free choice)
|

{f ; ; NI2: Addiction

(2]

|y oy | |
=] )=]l}

EI NI5: Replacing
human advisors

Long-term negative impact on users

NI3: Lower critical
thinking ability

(NEN}
11
1<l o

<L e

NI6: Weaker human
relationships

28

<7
-

= ==

Conversation LLMs

ability
o N v I/
AN
More behavioral Virtual,
user data, augmented
incl. emotions reality

Context,

General user (
environment

data: personality,
beliefs, taste

Human-like
RS

Present Critical thinking
Simple n Complex, intensive
communication communication
Rational thinking Strong relations
- )
RS User Other humans

Future
Immerse

communication

Rational thinking

Critical thinking

&

Simple, rare
communication

Weak relations

G

P Kazienko, E Cambria. Towards Responsible Recommender Systems. IEEE Intelligent Systems 39(3)

(2024)



Seven Umbrellas é

ay 4

Explaijnable Personalized
Sentimenit Analysis Sentimenit Analysis

A, O

Multimodal Multilingual
Sentiment Analysis, Sentime Analy5|s

T AN
Financial Conver ational
Sentiment Analysis Sentimenit Analysis

https://sentic.net/publications

Multitask
Sentiment Analysis



https://sentic.net/publications

Seven Projects

llﬂ% e o

S 6

Al for Business Intelligence Al for Social Media Monitoring

=

vy o=

Al for Education Al for Social Good Al for Healthcare

a2l
(0 X

Al for Online Safety Al for the Arts
https://sentic.net/projects



https://sentic.net/projects
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Mental Healthcare
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Mental Healthcare

Table 1: A summary of datasets. Note we hold out a portion of original training set as the validation set if the
original dataset does not contain a validation set.

Category Platform  Dataset train  validation test
Assorted Reddit SWMH (Ji et al., 2022) 34,823 8,706 10,883
Depression  Reddit eRisk18 T1 (Losada and Crestani, 2016) 1,533 658 619
Depression  Reddit Depression_Reddit (Pirina and Coltekin, 2018) 1,004 431 406
Depression  Reddit CLPsychl15 (Coppersmith et al., 2015) 457 197 300
Stress Reddit Dreaddit (Turcan and McKeown, 2019) 2,270 568 715
Suicide Reddit UMD (Shing et al., 2018) 993 249 490
Suicide Twitter T-SID (Ji et al., 2022) 3,072 768 960
Stress SMS-like  SAD (Mauriello et al., 2021) 5,548 617 685

SJi, T Zhang, L Ansari, J Fu, P Tiwari, E Cambria. MentalBERT: Publicly Available Pretrained
Language Models for Mental Healthcare. Proceedings of LREC, 7184-7190 (2022)
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Mental Healthcare é

Model DR CLPsych15 Dreaddit T-SID SAD CAMS
| Rec. F1 | Rec. F1 | Rec. F1 | Rec. F1 | Rec. F1 | Rec. Fl
BERT 91.13 9090 | 64.67 6275 | 78.46 78.26 | 88.44 8851 | 62.77 62.72 | 40.26 34.92
RoBERTa 95.07 95.11 | 67.67 66.07 | 80.56 80.56 | 88.75 88.76 | 66.86 67.53 | 41.18 36.54
XLNet 90.89 9044 | 69.83 69.12 | 78.88 78.84 | 86.04 86.18 | 67.30 67.30 | 50.64 49.16
Longformer 95.81 9574 | 75.67 75.47 | 81.54 8145 | 89.58 89.63 | 69.20 69.01 | 4952 49.42
MentalBERT 9458 94.62 | 64.67 62.63 | 80.28 80.04 | 88.65 88.61 | 6745 67.34 | 45.69 39.73
MentalRoBERTa 9433 9423 | 7033 69.71 | 81.82 81.76 | 88.96 89.01 | 68.61 68.44 | 50.48 47.62
ChatGPTzs 82.76  82.41 | 6033 56.31 | 72.72 71.79 | 39.79 3330 | 5591 54.05 | 3243 33.85
ChatGPTy 79.51 78.01 | 59.20 56.34 | 7423 7399 | 40.04 3338 | 5249 50.29 | 2848 29.00
ChatGPT N _sen 80.00 78.86 | 58.19 55.50 | 70.87 70.21 | 39.00 32.02 | 52.92 51.38 | 26.88 27.22
ChatGPT N _emo 79.51 7841 | 58.19 53.87 | 73.25 73.08 | 39.00 3225 | 54.82 52.57 | 3520 35.11
ChatGPTcor 82.72 8290 | 56.19 5047 | 70.97 70.87 | 37.66 32.89 | 55.18 52.92 | 39.19 38.76
ChatGPTcor_emo 83.17 83.10 | 61.41 5824 | 75.07 7483 | 3476 27.71 | 5831 56.68 | 43.11 42.29
MentalXLNet 9532 9524 | 71.67 7149 | 80.42 80.41 | 89.17 89.12 | 69.20 68.76 | 50.80 50.08
MentalLongformer | 96.55 96.53 | 77.00 76.32 | 81.12 81.05 | 89.90 89.89 | 68.76 68.44 | 4920 48.74

Table 3: Results of mental health classification. The bold text represents the best performance. Note that: for
Longformer and MentalLongformer, the best results are reported with longer texts as inputs.

SJi, T Zhang, K Yang, S Ananiadou, E Cambria, J Tiedemann. Domain-specific Continued Pretraining
of Language Models for Capturing Long Context in Mental Health. arXiv:2304.10447 (2024)
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Figure 2: An illustration of prompting from the view of meta update. The change in the prompt
might lead to suboptimal, possibly explaining the unpredictable LLMs’ generation-as-prediction.

S Ji, T Zhang, K Yang, S Ananiadou, E Cambria. Rethinking Large Language Models in Mental
Health Applications. arXiv preprint arXiv:2311.11267 (2023)
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Relation Networks. Neural Computing and Applications 34, 10309-10319 (2022)
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Depression detection
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Dataset

— #MentalHealth: This hashtag is widely used to discuss various aspects of men-
tal health, including stress, depression, anxiety, and other related conditions.
It encompasses conversations about personal experiences, coping strategies,
and advocacy efforts.

— #Depression: This hashtag specifically focuses on discussions surrounding
depression, a mood disorder characterized by persistent feelings of sadness,
hopelessness, and loss of interest. It is often used to share personal stories,
raise awareness, and provide support to those struggling with depression.

— #Anxiety: Anxiety is a common mental health condition characterized by
excessive worry, fear, and apprehension. The #Anxiety hashtag is used to
share experiences, coping mechanisms, and resources for managing anxiety-
related symptoms.

— #Stress: This hashtag is used to discuss the experience of stress, which refers
to the body’s response to perceived threats or challenges. Discussions under
this hashtag include triggers of stress, coping strategies, and the impact of
chronic stress on mental and physical health.

— #SelfCare: Self-care involves intentionally taking care of one’s physical, emo-
tional, and mental well-being. The #SelfCare hashtag is used to share tips,
practices, and experiences related to self-care activities that can help alleviate
stress and promote overall wellness.

— #MentalHealthAwareness: This hashtag is used to raise awareness about
mental health issues, including stress and depression, and to promote under-
standing, acceptance, and support for individuals experiencing mental health
challenges.

— #EndStigma: Stigma surrounding mental health can create barriers to seeking
help and support. The #EndStigma hashtag is used to advocate for ending
the discrimination and prejudice associated with mental illness, fostering a
more inclusive and supportive society.

— #MentalHealthMatters: This hashtag emphasizes the importance of priori-
tizing mental health and acknowledging its significance in overall well-being.
It is often used to promote conversations, initiatives, and policies aimed at
addressing mental health issues such as stress and depression.

— #Wellness: Wellness encompasses various dimensions of health, including
physical, mental, emotional, and social well-being. The #Wellness hashtag
is used to share tips, resources, and practices that support holistic health and
promote stress reduction and resilience.

— #SelfLove: Self-love involves cultivating a positive and compassionate rela-
tionship with oneself. The #SelfLove hashtag is used to promote self-
acceptance, self-care, and self-compassion, which are important aspects of
managing stress and improving mental health.
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Data Analysis
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QOutcomes

Relationship issues: Problems within intimate relationships or family con-
flicts can impact mental health and contribute to depressive symptoms.
Financial problems: Financial stress, such as debt, unemployment, or finan-
cial instability, can lead to feelings of hopelessness.

Social isolation: Lack of social support and feelings of loneliness can cause
depression, as social connections are essential for emotional well-being.
Work-life balance: Difficulty balancing work responsibilities with personal
life and self-care can lead to chronic stress and impact mental well-being.
Academic pressure: Students experience stress and depression due to aca-
demic demands, performance pressure, or difficulty coping with coursework.
Discrimination: Experiencing discrimination based on race, ethnicity, gen-
der identity, sexual orientation, or other factors can lead to chronic stress.
Chronic pain: Living with chronic health conditions or experiencing persis-
tent pain can be emotionally draining and exacerbate feelings of depression.
Trauma: Past trauma, including physical, emotional, or sexual abuse, can have
long-lasting effects on mental health and increase the risk of depression.
Media exposure: Overexposure to negative news, social media comparison,
or unrealistic portrayals of success can contribute to feelings of inadequacy.
Environmental factors: Environmental stressors such as pollution, noise,
or overcrowding can contribute to chronic stress and impact mental health.

v
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Bottom-up (data-driven) approach

F Xu, Q Lin, J Han, T Zhao, J Liu, E Cambria. Are Large Language Models Really Good Logical Reasoners?
A Comprehensive Evaluation From Deductive, Inductive and Abductive Views. arXiv 2306.09841 (2023)
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If you use any sentic algorithm or resource,
consider submitting to our Special Section on
Cognitive Computation (5.418 impact factor)

https://sentic.net/scs.pdf
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Explicable Artificial Intelligence for Affective Computing

Guest Editors:
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Melvin Chen, Nanyang Technological University, Singapore

Zhaoxia Wang, Singapore Management University, Singapore
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Background:

As Artificial Intelligence (Al) advances, the need for transparency and interpretability in its decision-making processes becomes more
pronounced, especially within the domain of affective computing. The capacity of Al systems to comprehend and react to human
emotions introduces ethical considerations, necessitating a delicate equilibrium between innovation and accountability. Various
stakeholders, spanning end-users, developers, and policymakers, express a collective need for a more profound comprehension of
these systems, particularly in emotionally charged situations.

The motivation of this Special Issue stems from the inherent challenges in creating Al models that not only accurately recognize and
respond to human emotions but also provide clear, interpretable insights into their decision-making processes. The Special Issue also
aims at enriching the connotation of Explicable Al with diverse and comprehensive dimensions. Expanding the meaning of explicability
is not just about deciphering the “black box” nature of Al models; it involves a broader understanding that encapsulates various facets
crucial for fostering user trust, ethical considerations, and interdisciplinary collaboration.

https://sentic.net/eaidac.pdf
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SENTIRE

ICDM 2024

The world’s premier research conference in Data Mining
9-12 December 2024, Abu Dhabi, UAE

The IEEE International Conference on Data Mining (ICDM) has established itself as the
world's premier research conference in data mining. It provides an international forum for
presentation of original research results, as well as exchange and dissemination of
innovative and practical development experiences. The conference covers all aspects of

data mining, including algorithms, software, systems, and applications. ICDM draws
researchers, application developers, and practitioners from a wide range of data mining
related areas such as big data, deep learning, pattern recognition, statistical and machine
learning, databases, data warehousing, data visualization, knowledge-based systems, and
high-performance computing. By promoting novel, high-quality research findings, and
innovative solutions to challenging data mining problems, the conference seeks to advance
the state-of-the-art in data mining.

Key dates

e September 10, 2024: Workshop papers submission

e QOctober 7, 2024: Notification of acceptance to authors
e October 11, 2024: Camera-ready deadline

e December 9, 2024: Workshops date

https://sentic.net/sentire
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Downloads: https://sentic.net/downloads

Code: https://github.com/senticnet
Sentic APIs: https://sentic.net/api

Sentic API Suite

Type in text in any of the languages below
or click on a flag to select a specific lingo
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